Part Number Hot Search : 
U10A6CIC KBL00 SH90207 PMEG20 SBT3040 HIP6301 MV5B60 CD2087
Product Description
Full Text Search
 

To Download TA32305FN Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  TA32305FN/fng 2003-12-04 1 toshiba bipolar linear int egrated circuit silicon monolithic TA32305FN/TA32305FNg* rf 1chip receiver and transmitter for low power wireless the TA32305FN is an rf 1 chip receiver and transmitter ic. receiver is for am/fm radio. the ic incorporates an rf amp, 2-level comparator, and local 8 circuit. this ic?s main use is remote control. features ? rf frequency: 240 to 450 mhz (multiplication is used) ? if frequency: 80 khz ? operating voltage range: 2.2 to 5.5 v ? current dissipation: tx 4.3 ma/ rx 5.6 ma (fm), 5.3 ma (am) (except current at oscillator circuit) ? current dissipation at bs: 0 a (typ.) ? small package: 30-pin ssop (0.65 mm pitch) block diagram *: TA32305FNg package is pb-free. ssop30-p-300-0.65 weight: 0.17 g (typ) 12 4 3 5 6 7 8 10 11 19 27 28 26 25 24 23 22 21 20 8 rssi ref af out mix in gnd1 rf dec charge rf in vcc3 if in gnd2 iff out mix out u/l iff in osc in rf out 29 30 2 1 tx lpf out lpf in detector if out quad vcc2 v cc 1 9 18 13 17 14 15 16 tx power am/ fm tx out rx tx data rx data comparator rssi saw
TA32305FN/fng 2003-12-04 2 pin description (the values of resistor and capacitor in the internal equivalent circuit are typical.) pin no. pin name function in ternal equivalent circuit 1 osc in local oscillator input pin. 2 v cc 1 local? power supply pin.  3 u/l u/l switch pin. open : upper local l : lower local do not connect vcc. 4 mix out mixer output pin. the output impedance of the pin is typically 225 : . 5 iff in if filter input pin. 6 iff out iffilter output pin. 7 v cc 2 power supply pin 2.  8 if in if amp input pin. 10 if out if amp output pin. 9 gnd2 gnd pin 2.  100 k : 3 10 k : 8 10k : 10k : 10 200 : 2 pf 1 15 k : 10 k : 10 k : 15 k : 50 k : 200 : 4 6 100 : 5
TA32305FN/fng 2003-12-04 3 pin no. pin name function in ternal equivalent circuit 11 quad phase-shift input terminal for the fsk demodulator. 12 vcc3 power supply pin 3. ?\ 13 tx power regulating tx output power pin. 15 tx out txsignal output pin. 14 am/fm changeover switch for am/ fm. open : am l : fm do not connect vcc. 16 rf in rf signal input pin. 17 rf dec emitter pin for internal transistor. 19 rf out rf amp output pin. 18 charge control terminal for quick charge circuit. to use the quick charge circuit, attach a capacitor. 19 17 16 3 k : 10 k : 120 k : 14 10 k : 11 10k : 32 k : 32 k : 15 13 18 100 k : 5 k : 250 :
TA32305FN/fng 2003-12-04 4 pin no. pin name function in ternal equivalent circuit 20 mix in mixer input pin. 21 gnd1 gnd pin 1. ?\ 22 ref threshold input terminal for 2-level fm/am comparator. 23 rssi rssi output pin. this pin is connected internal circuit. moni pin during transmitting. 24 af out output terminal for fm demodulator.   25 lpf in fm/am lpf input pin. 26 lpf out fm/am lpf output pin. 27 tx battery saving pin for transmitter. 23 24 k : 24 330 : 41 k : 27 25 5 k : 26 250 : 25 26 22 250 : 5 k : 100 k : 100 k : data comp 33 k : 20 2.4 k :
TA32305FN/fng 2003-12-04 5 pin no. pin name function in ternal equivalent circuit 28 rx battery saving pin for receiver. 29 tx data am modulation switch for transmitter. l : output on h : output ff 30 rx data fm/am waveform shaping output pin for receiver. open collector output. connect a pull-up resistor. equivalent circuits are given to help understand design of the external circuits to be connected. they do not accurately represent the internal circuits. 2 k : 30 30 k : 28 97 k : 28
TA32305FN/fng 2003-12-04 6 functions 1. waveform shaper circuit (comparator) the output data (pin 30) are inverted. 2. rssi function dc potential corresponding to the input level of if in (pin 8) is output to rssi (pin 23). output to rssi (pin 23) is converted to a voltage by the internal resistance. thus, connecting external resistance r to pin 21 varies the gradient of the rssi output as shown below. note that due to the displacement of temperature coefficients between ex ternal resistor r and the internal ic resistor ic resistor, the temperature characteristic of the rssi output ma y change. also, the maximum rssi value should be v cc  0.8 v or less. figure 1 figure 2 3. s curve characteristics changing external capacitance c27 varies the gradient of the s curve characteristics as shown below. in case of widening the detection range, heighten ing if frequency or lowering demodulation output, make the gradient of the s curve characteristics gentle less than typical (120pf). when using this ic by about 2.2v (low supply), set the constant of c27 100pf or add attenuator to af out (24 pin). figure 3 4. v cc pin and gnd pin use the same voltage supply for v cc1 (2 pin) and v cc2 (7 pin) and v cc3 (12 pin) (or connect them). also, use the same voltage supply source for gnd1 (21 pin) and gnd2 (9 pin) (or connect them). 5. local oscillator circuit the local oscillator circuit is extern al-input-only. the device incorporat es no transistor for oscillation. input to pin 1 at a level from 92 to 105db p v. adjust the values of constants c shown in the app lication circuit diagram so that the input level will become approximately 100db p v. 6. u/l switch pin it is possible to switch mixer output frequency to upper local or lower local comparing rf input frequency. if input level after r is connected 24 k : 23 r if frequency after c is lessened
TA32305FN/fng 2003-12-04 7 7. rf amp current adjustment the rf amp current dissipation can be regulated by varying resistor r as shown in the figure below. when r  560 : , the current dissipation is approximately 600 p a. figure 4 8. battery-saving (bs) function the ic incorporates a battery-saving function. these functions offer the following selection. receiver fm mode (fm/am pin: gnd) rx pin circuit status in the ic ic current dissipation (at no signal) h circuits in operation: u 8 circuit mixer rf amp comparator if amp detector circuit rssi comparator capacitor charger circuit 5.6 ma (typ.) l all circuits 0 ma (typ.) am mode (fm/am pin: open) rx pin circuit status in the ic ic current dissipation (at no signal) h ircuits in operation: u 8 circuit mixer rf amp comparator if amp rssi comparator capacitor charger circuit 5.3 ma (typ) l all circuits 0 ma (typ) transmitter tx pin circuit status in the ic ic current dissipation (at no signal) h circuits in operation: u 8 circuit tx amp 4.3 ma (typ) l all circuits 0 ma (typ) 17 r rf dec
TA32305FN/fng 2003-12-04 8 9. rf amp gain 2 rf amp gain 2 (g v (rf) 2 ) is a reference value calculated as follows. measure g rf in the following figure. g v (rf) 2 is calculated as follows: g v (rf) 2 g rf  g v (mix) figure 5 10. waveform-shaping output duty cycle the specified range of electr ical characteristics is only available for single-tone. 11. treatment of fm terminal when using am when using am, it is not necessary to treat the quad pin (pin 11). leave it open or connected to an fm external circuit. to use the bit rate filter, connect the rssi pin (pin 23) to th e bit rate filter through a resistor. the af-out pin (pin 24) should be left open. figure 6 figure 7 r13 r14 af out rssi bit rate filter for fm c18 c19 24 23 27 nh 1000 pf 4 20 19 16 33 nh 0.01 p f sg 30db p v g rf 6 pf 6 pf 1 k : 23 24 r13 af out rssi bit rate filter for am r15 c18 r
TA32305FN/fng 2003-12-04 9 12. control terminal for quick charge circuit (charge) charge (18 pin) is control terminal for quick charge circuit. ref (22 pin) control terminal for quick charge a given period by time constant of internal resistance and outside capacitance. enabling the charge pin requires an external capacitor. in normal operation, connect a capacitor having the same capacitance as that of the capacitor connected to the ref pin (pin 22). if the connected external capacitor (c30) is 0.1 p f, the quick charge time is 7 ms (typically). 13. bit rate filter for fm the current fm bit rate filter is used as a tertiary filter. if the filter is to be used at a rate other than 1200 bps, please change the filter constant. quadratic filter (nrz) r12 r13 r14 c14 c15 c18 1200 bps 68 k : 68 k : 68 k : 0.01 p f 560 pf 3300 pf 2400 bps 68 k : 68 k : 68 k : 4700 pf 270 pf 1500 pf 4800 bps 68 k : 68 k : 68 k : 2200 pf 150 pf 680 pf 9600 bps 68 k : 68 k : 68 k : 1200 pf 68 pf 390 pf 14. bit rate filter for am the current am bit rate filter is used as a quadratic filter. if the filter is to be used at a rate other than 1200 bps, please change the filter constant. quadratic filter (nrz) (the bit rate filter time constant takes in to account the internal resistance rssi (24 k : )) r15 r12 c14 c15 1200 bps 43 k : 68 k : 4700 pf 1500 pf 2400 bps 43 k : 68 k : 2200 pf 680 pf 4800 bps 43 k : 68 k : 1000 pf 390 pf 9600 bps 43 k : 68 k : 470 pf 180 pf in addition, the current am bit rate filter can be used as a tertiary filter. if the filter is to be used at a rate other than 1200 bps, please change the filter constant. quadratic filter (nrz) (the bit rate filter time constant takes in to account the internal resistance rssi (24 k : ) ) r15 r13 r12 c14 c15 c18 1200 bps 43 k : 68 k : 68 k : 0.01 p f 560 pf 3300 pf 2400 bps 43 k : 68 k : 68 k : 4700 pf 270 pf 1500 pf 4800 bps 43 k : 68 k : 68 k : 2200 pf 150 pf 680 pf 9600 bps 68 k : 68 k : 68 k : 1200 pf 68 pf 390 pf for the cutoff frequency of the bit rate filter, specify a sufficiently high value for the bit rate to be used. specifying a relatively high cutoff frequency for the bi t rate filter enables a low capacitor to be used at the ref pin, therefore making the pulse rise quickly. when am is used, the internal resi stance of rssi is used. so, take the output resistance into account when specifying a cutoff frequency.
TA32305FN/fng 2003-12-04 10 15. simple image cancel mixer for receiver the ic incorporates simple image cancel mixer for receiver. 16. tx amp current adjustment the rf amp current dissipation can be regulated by varying resistor r as shown in the figure below. when r 560 : , the current dissipation is approximately 680 p a.. figure 8 13 r tx_pow
TA32305FN/fng 2003-12-04 11 cautions for designing circuit board patterns observe the following cautions when designing circuit patterns for this product. local oscillator circuit (pin 1) isolate the local oscillator circuit bloc k sufficiently from the rf amp block. isolate the local oscillator circuit block securely so that its output will not get in the if input, if filter, or mixer input. do not place the local oscillator circuit block too close to the ceramic filter. subdivide the ground pattern for the local oscillator ci rcuit block, and connect th e subdivisions with thin lines. if input and output block (pin 8, 10) isolate the input from output pattern s of the if filter and detector block securely from each other. demodulator circuit block (pin 11) isolate the demodulator circuit block suffici ently from the if input block (pin 8). do not place the lc too close to the ic device. data output block (pin 30) isolate the data output block sufficien tly from the if input block (pin 8). isolate the output pattern of the data output block from other circuits as much as possible, so any noise from a stage subsequent to the output will not affect them. rf amp circuit block 1) preventing rf amp oscillation do not place the patterns connected to pi ns 16 and 17 too close to each other. isolate the patterns connected to th e input block (pin 16) and output block (pin 19) from each other. make the rf input signal line relatively thin. place a relatively wide ground pattern between the rf-in pin (pin 16) and rf-dec pin (pin 17). connect the rf-out pin (pin 19) and mix-in pin (pin 20) with the shortest possible pattern. 2) attaining a sufficient gain to attain a sufficient rf amp gain, select an optimu m value for the input matching circuit block (pin 16) according to the board circuit pattern. 3) sharing antenna with receiver and transmitter using hi power application, place the patterns connected to saw filter and pin 15 close. ic mounting area provide a ground pattern under the ic device , and prepare relatively many through holes. cautions for mounting mount better accurate constants of capacitance in if filter block and detector block.
TA32305FN/fng 2003-12-04 12 maximum ratings (unless otherwise specified, ta 25c. the voltage is with reference to the ground level.) characteristics symbol rating unit supply voltage v cc 6 v power dissipation p d 860 mw operating temperature range t opr  40~85  c storage temperature range t stg  55~150 c the maximum ratings must not be exceeded at any time. do not operate the device under conditions outside the above ratings. operable range (unless otherwise specified, ta 25c. the voltage is with reference to the ground level.) characteristics symbol test circuit test condition min typ. max unit operating voltage range v cc   2.2 3.0 5.5 v rf operating frequency f rf  250  450 mhz operating ranges indicate the conditions for which the device is intended to be functional even with the electrical changes. electrical characteristics (unless otherwise specified: ta 25c, v cc 3 v, u/l open, fin (rf) fin (mix) 314.96 mhz, fin (if) 80 khz) ) receiver block characteristics symbol test circuit test condition min typ. max unit current dissipation at battery saving i cco 3 rx ?l?,tx ?l? ?\ 0 5 p a rf amp gain 1 g v (rf) 1 1 (5) the input and output impedances are 50 : . -9.0 -6.5 -4.0 db mixer conversion gain g v (mix)   18 21 24 db rssi output voltage 1 v rssi1  v in (mix) 25db p vemf in am mode 0.25 0.5 0.75 v rssi output voltage 2 v rssi2  v in (mix) 50db p vemf in am mode 0.7 1.0 1.3 v rssi output voltage 3 v rssi3  v in (mix) 80db p vemf in am mode 1.35 1.7 2.05 v rssi output resistance r rssi   18 24 30 k : comparator input resistance r comp   75 100 125 k : rx data output voltage (l level) v rxdatal 1 (3) i rxdatal 200 p a  0.04 0.4 v rx data output leakage current (h level) i rxdatah 1 (4)   0 2 p a rx pin h-level input voltage v rxh   2.0  5.5 v rx pin l-level input voltage v rxl   0  0.2 v
TA32305FN/fng 2003-12-04 13 fm mode (ta 25c, vcc 3.0 v, fin (rf) fin (mix) 314.96 mhz, u/l open, fin (if) 80 khz, dev r 8 khz, fmod 600 hz ((single wave)) characteristics symbol test circuit test condition min typ. max unit quiescent current consumption (for fm) iccqfm 2 (1) rx/fmam ?h/ l? fin (lo) 39.38 mhz 4.2 5.6 7.0 ma demodulated output level vod  v in (mix) 60db p vemf  95 130 165 mvrms waveform shaping duty ratio drfm 1 (2)  v in (mix) 60db p vemf for single tone  45 50 55 % am mode (ta 25c, vcc 3.0 v, fin (rf) fin (mix) 314.96 mhz, u/l open, fin (if) 80 khz, am 90%, fmod 600 hz (square wave) ) characteristics symbol test circuit test condition min typ. max unit quiescent current consumption (for am) iccqam 2 (2) rx/fmam ?h/ open? fin (lo) 39.38 mhz 3.9 5.3 6.7 ma reference characteristic data dram 1 (2)  v in (mix) 60db p vemf for single tone  45 50 55 % transmitter block characteristics symbol test circuit test condition min typ. max unit quiescent current consumption (for transmitter mode) iccqtx 2 (3) tx= ?h? 3.0 4.3 5.6 ma txdata pin h-level input voltage v txdatah   2.0  5.5 v txdata pin l-level input voltage v txdatal   0  0.2 v tx pin h-level input voltage v txbsh   2.0  5.5 v tx pin l-level input voltage v txbsl   0  0.2 v txoutput signal level 1 v tx1  the output impedances are 50 :  -25.5 -22.5 -19.5 dbm reference characteristic data * characteristics symbol test circuit test condition typ. unit rf amp gain 2 g v (rf) 2   30 db rf amp input resistance r (rf) in   1.0 k : rf amp input capacitance c (rf) in   2.0 pf rf amp output capacitance c (rf) out   2.0 pf mixer input resistance r (mix) in   1.2 k : mixer input capacitance c (mix) in   1.6 pf mixer intercept point ip3   96 db p v ifamp gain g v (rf)   65 db signal-to-noise ratio 1 s/n1 1 (8) v in (mix)  20db p vemf  19 db signal-to-noise ratio 2 s/n2  1 (8)  v in (mix) 60db p vemf  56 db tx amp output capacitance c (tx) out   2.0 pf tx output signal level 2 v tx2   -14 dbm * : these characteristic data values are listed just for reference purposes. they are not guaranteed values.
TA32305FN/fng 2003-12-04 14 typical test circuit (fsk) test circuit 1 (1) v rssi (2) d r (3) v data l (4) i data h 12 4 3 5 6 7 8 10 11 19 27 28 26 25 24 23 22 21 20 u 8 rssi ref af out mix in gnd1 rf dec charge rf in vcc3 if in gnd2 iff out mix out u/l iff in osc in rf out 29 30 2 1 tx lpf out lpf in detector if out quad vcc2 v cc 1 9 18 13 17 14 15 16 tx power am/ fm tx out rx tx data rx data comparator rssi saw 1000 pf 560 : r21 c35 1000 pf c32 0.1 p f c30 ?? c22 v cc v cc v cc v cc v cc v cc v cc v cc 27nh 1 k : l1 r19 6 pf 0.01 p f c24 c25 1000 pf c26 c22 0.1 p f 68 k : r13 0.01 p f 560 pf 68 k : c14 c15 r12 100 k : r7 100 k : r6 0.1 p f c12 r10 4.3 k : 4.7 k : r11 r18 20 k : 560 : r20 r22 560 : c13 120 p f 10 p f c17 10 p f 0.1 p f 1000 p f c28 c29 c31 c27 120 pf l2 0.01 p f 1000 pf c16 l3 33 nh c36 5 p f r14 68 k : c19 1000 pf c18 3300 pf 6 pf c37 c20 330 pf c33 22nh 6 pf c34 v 1000 pf sg 1 51 : 0.01 p f 20 sg 51 : 1000 pf 23 30 100 k : v cc sg 1 51 : 0.01 p f 20 sg 51 : 1000 pf 30 v r 100 k : 25 22 1.5 v v v 2.0 v 25 22 2.0 v v v 1.5 v 30 v cc i v/100 u 10 3 v 100 k :
TA32305FN/fng 2003-12-04 15 (5) g v (rf) 1 (6) g v (mix) (7) g v (mix) vs v lo (8) s/n1, 2 test circuit 2 (1) i ccqfm (2) i ccqam test circuit 3 (3) i cctx i cco sg 16 19 51 : 1000 pf 1000 pf sg 1 26 51 : 0.01 p f 20 sg 51 : 1000 pf buff 9 sg 560 : 1 17 14 51 : 0.01 p f 27 21 12 19 a 2 28 7 vcc 9 sg 560 : 1 12 19 a 17 51 : 0.01 p f 2 21 28 7 27 v cc sg 560 : 1 13 51 : 0.01 p f 28 21 12 15 a 2 27 7 v cc 9 560 : v cc 17 12 19 a 21 28 2 7 15 27 560 : 13 4 sg 1 51 : 0.01 p f 20 sg 51 : 1000 pf 5 6 8 4.7 k : 330 pf 1000 pf 120 pf 4 sg 1 51 : 0.01 p f 20 sg 51 : 1000 pf 5 6 8 4.3 k : 4.7 k : 330 pf 1000 pf 120 pf
TA32305FN/fng 2003-12-04 16 reference data (this is characteristics data when it used evaluation boards. this is not guarantee on condition that it is stating except electrical characteristics.) quiescent current consumption ? supply voltage characteristics supply voltage v cc (v) quiescent current consumption i cc (ma) quiescent current consumption ? supply voltage characteristics tx mode supply voltage v cc (v) quiescent current consumption i ccq tx (ma) rf amp gain ? supply voltage characteristics supply voltage v cc (v) rf amp conversion gain (db) quiescent current consumption ? supply voltage characteristics fm mode supply voltage v cc (v) quiescent current consumption i ccqfm (ma) quiescent current consumption ? supply voltage characteristics am mode supply voltage v cc (v) quiescent current consumption i ccqam (ma) rf amp frequency characteristics rf in input frequency f (rf) in (mhz) rf amp conversion gain (db) 0 1 2 3 4 5 6 0123456 bs f (lo) in = 39.38 m h z v (lo) in = 100dbv *?x?c?b?`?[?q ?d?????? fm a m tx 0 1 2 3 4 5 6 7 8 01 234 56 f (lo) in = 39.38 m h z v (lo) in = 100dbv * ?x?c?b?`?[?q ?d?????? 25 ?? 125 ?? -40 ?? 0 1 2 3 4 5 6 7 8 0123456 f (lo) in = 39.38 m h z v (lo) in = 100dbv * ?x?c?b?`?[?q ?d?????? 25 ?? 125 ?? -40?? 0 1 2 3 4 5 6 012 3456 f (lo) in = 39.38 m h z v (lo) in = 100dbv ???x?c?b?`?[?q ?@?d?????? -40 ?? 125 ?? 25 ?? -60 -50 -40 -30 -20 -10 0 0123456 f(r f)in= 314.96m h z v(r f)in= 50dbuv < m eas point> rfout at spectrum analyzer ?|??o? 50 ? 25 ?? 125 ?? -40 ?? -11 -10 -9 -8 -7 -6 -5 100 1000 vcc=3v v(r f)in= 50dbuv rfout at spectrum a nalyzer ?|??o? 50 ? -40 ?? 25 ?? 125 ?? * no switching pin current is included. * no switching pin current is included. * no switching pin current is included. * no switching pin current is included. * input/output impedance = 50 ? * input/output mpedance = 50 ?
TA32305FN/fng 2003-12-04 17 reference data (this is characteristics data when it used evaluation boards. this is not guarantee on condition that it is stating except electrical characteristics.) s/n characteristics (mix input) in the fm mode mix in input level v (mix) in (db vemf) s + n, n (db) s/n characteristics (mix input) in the am mode mix in input level v (mix) in (db vemf) s + n, n (db) s curve characteristics (mix in) mix in input level v (mix) in (db vemf) s + n, n (db) rssi output voltage characteristics (mix, and rf inputs) input level vin (db vemf) rssi output voltage vrssi (v) rssi output voltage characteristics (mix inputs) mix in input level v (mix) in (db vemf) rssi output voltage vrssi (v) s/n characteristics (rf input) in the fm mode rf in input level v (rf) in (db vemf) s + n, n (db) 0 0.5 1 1.5 2 2.5 3 -70 -50 -30 -10 10 30 50 70 vcc=3v f(m ix)in= 314.9m h z + ? f v(mix)in=50dbuvemf f(lo)in= 39.38m h z v(lo)in= 100dbuv a fout at multi meter -40 ?? 125 ?? 25 ?? 0 0.5 1 1.5 2 -20 0 20 40 60 80 100 120 vcc = 3 v f (m ix) in = 314.96 m h z f (lo) in = 39.38 m h z a m < m eas point> filou t at audio analyzer -40 ?? 25 ?? 125 ?? 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 -20 0 20 40 60 80 100 120 vcc = 3 v f (m ix) in = 314.96 m h z f (lo) in = 39.38 m h z a m < m eas point> filou t at audio analyzer mix in rf in -70 -60 -50 -40 -30 -20 -10 0 10 -20 0 20 40 60 80 100 120 vcc = 3 v f (m ix) in = 314.96 m h z d ev = 8 kh z fmod = 600 h z < m eas point> filou t at audio analyzer -40 ?? -40 ?? -40 ?? 125 ?? 125 ?? 125 ?? 25 ?? 25 ?? 25 ?? s a mr n s+n -80 -70 -60 -50 -40 -30 -20 -10 0 10 -20 0 20 40 60 80 100 120 vcc = 3 v f (m ix) in = 314.96 m h z a m = 90% fmod = 600 h z < m eas point> filou t at audio analyzer 125 ?? 25 ?? -40 ?? 125 ?? 25 ?? -40 ?? s n s+n -70 -60 -50 -40 -30 -20 -10 0 10 -20 0 20 40 60 80 100 120 vcc = 3 v f (r f) in = 314.96 m h z d ev = 8 kh z fmod = 600 h z < m eas point> filou t at audio analyzer s n a mr s+n
TA32305FN/fng 2003-12-04 18 -20 -15 -10 -5 0 5 10 15 20 25 60 70 80 90 100 110 120 vcc=3v f(m ix)in= 314.96m h z v(r f)in= 60dbuv f(lo)in= 39.38m h z u/l=open < m eas point> mixout at spectrum analyzer 0 20 40 60 80 100 120 40 50 60 70 80 90 100 110 120 vcc=3v < ??] > f(sg1,sg2)in= 314.96m h z < ?w?q > f(sg1)in= 315.06m h z f(sg2)in= 315.16m h z < m eas point> m ixou t at spectrum a nalyzer ??]?g ?w?q?g reference data (this is characteristics data when it used evaluation boards. this is not guarantee on condition that it is stating except electrical characteristics.) mixer conversion gain frequency characteristics mix in input frequency f (mix) in (mhz) mixer conversion gain g v (mix) (db) mixer conversion gain ? local input level characteristics lo input level v (lo) in (db v) mixer conversion gain g v (mix) (db) mixer conversion gain ? supply voltage characteristics supply voltage v cc (v) mixer conversion gain g v (mix) (db) mixer intercept point sg input level v (mix) in (db v) mixer output level v (mix) out (db v) detuning characteristics detuning frequency (khz) attenuation level (db) demodulation output ? supply voltage characteristics (fm) supply voltage v cc (v) demodulation output (mvrms) -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 123456 f(m ix)in= 314.96m h z v(m ix)in= 60dbuv f(lo)in= 39.38m h z v(lo)in= 100dbuv < m eas point> mixout at spectrum analyzer -40 ?? 25 ?? 125 ?? 0 5 10 15 20 25 100 1000 vcc=3v v(r f)in= 60dbuv v(lo)in= 100dbuv u/l=open < m eas point> mixout at spectrum analyzer -40 -35 -30 -25 -20 -15 -10 -5 0 5 -60 -40 -20 0 20 40 60 vcc=3v f(m ix)in= 314.96m h z+ ? f v(m ix)in= 50dbuv f(lo)in= 39.38m h z v(lo)in= 100dbuv d ev= 8kh z fmod= 600h z < m eas point> a fou t at audio analyzer 0 20 40 60 80 100 120 140 160 123456 f(m ix)in= 314.96m h z v(lo)in= 50dbuvemf d ev= 8kh z fmod= 600h z f(lo)in= 39.38m h z v(lo)in= 100dbuv < m eas point> filout at audio analyzer -40 ?? 125 ?? 25 ?? desired wave interference wave interference wave desired wave
TA32305FN/fng 2003-12-04 19 reference data (this is characteristics data when it used evaluation boards. this is not guarantee on condition that it is stating except electrical characteristics.) demodulation distortion characteristics detuning frequency (mix in) (khz) demodulation distortion (db) supply voltage v cc (v) waveform shaping output duty ratio dr (%) waveform shaping output duty ratio ? supply voltage characteristics fm mode supply voltage v cc (v) waveform shaping output duty ratio dr (%) waveform shaping output duty ratio ? supply voltage characteristics -35 -30 -25 -20 -15 -10 -5 0 -80 -60 -40 -20 0 20 40 60 vcc=3v f(m ix)in= 314.96m h z + ? f v(m ix)in= 50dbuv f(lo)in= 39.38m hz v(lo)in= 100dbuv < m eas point> a fout at audio analyzer 40 42 44 46 48 50 52 54 56 58 60 123456 f(m ix)in= 314.96m h z v(m ix)in= 50dbuvemf d ev= 8kh z fmod= 600h z f(lo)in= 39.38m h z v(lo)in= 100dbuv < m eas point> data at osc -40 ?? 125 ?? 25 ?? 40 42 44 46 48 50 52 54 56 58 60 123456 f(m ix)in= 314.96m h z v(m ix)in= 50dbuvemf a m=90% fmod= 600h z( ??`?g ) f(lo)in= 39.38m h z v(lo)in= 100dbuv data at osc -40 ?? 25 ?? 125 ?? waveform shaping output duty ratio ? supply voltage characteristics am mode waveform shaping output duty ratio dr (%) tx output power ? supply voltage characteristics supply voltage v cc (v) tx output level v tx1 (db) tx output power frequency characteristics tx output frequency f (tx)out (mhz) tx output level v tx1 (db) -120 -100 -80 -60 -40 -20 0 123456 f(lo)in= 39.38m h z v(lo)in= 100dbuv < m eas point> tx out at spectrum analyzer ?|??o? 50 ? 125 ?? -40 ?? 25 ?? -45 -40 -35 -30 -25 -20 -15 0 100 200 300 400 500 600 700 800 vcc=3v v(lo)in= 100dbuv < m eas point> tx out at spectrum analyzer ?|??o? 50 ? -40 ?? 25 ?? 125 ?? 40 42 44 46 48 50 52 54 56 58 60 123456 f(r f)in= 314.96m h z v(r f)in= 20dbuvemf f(lo)in= 39.38m h z v(lo)in= 100dbuv < m eas point> data at osc fm dec=4khz fm dec=8khz a m fm dev= ?} 8khz fm dev= ?} 4khz supply voltage v cc (v) (retangle) * input/output impedance = 50 ? input/output impedance = 50 ?
TA32305FN/fng 2003-12-04 20 reference data (this is characteristics data when it used evaluation boards. this is not guarantee on condition that it is stating except electrical characteristics.) sensitivity detuning characteristics (am and fm modulation) rf in input frequency f (rf) in (mhz) 12db sinad sensitivity (db vemf) 12db sinad sensitivity ? supply voltage characteristics supply voltage v cc (v) 12db sinad sensitivity (db vemf) tx out power frequency characteristics tx output frequency f (tx)out (mhz) tx output level v tx1 (db) rf amp gain + mixer conversion gain ? supply voltage characteristics supply voltage v cc (v) rf amp + mixer conversion gain g v (db) -22 -20 -18 -16 -14 -12 -10 200 250 300 350 400 450 500 vcc=3v v(lo)in= 100dbuv < m eas point> tx out at spectrum analyzer ?|?o??}?b?`???o 25 ?? 125 ?? -40 ?? 0 10 20 30 40 50 60 123456 vcc=3v ?? (r f)in= 314.96m h z v(r f)in= 50dbuv < m eas point> mix outat spectrum analyzer ?|??o? 50 ? -15 -10 -5 0 5 10 15 -120 -100 -80 -60 -40 -20 0 20 40 60 vcc=3v f(lo)in= 39.38m h z v(lo)in= 100dbuv u/l=open fmod= 600h z < m eas point> filou t at a udio analyzer ?| saw ?t?b???^?3 f m d ev= 4kh z f m d ev= 4kh z a m fm dev= ?} 8khz -14 -12 -10 -8 -6 -4 -2 0 2 123456 f(r f)in= 314.96m h z f(lo)in= 39.38m h z v(lo)in= 100dbuv filout at audio analyzer f m d ev= 4kh z f m d ev= 4kh z a m fm dev= ?} 8khz 2 signal interference characteristics (if filter band) interference wave input frequency (mhz) interference control ratio (db) -10 0 10 20 30 40 50 60 314.6 314.7 314.8 314.9 315 315.1 315.2 315.3 f(rf)in = 314.96mhz v(rf)in = 5.7dbuvemf dev = 8khz fmod = 600hz f(lo)in = 39.38mhz v(lo)in = 100dbuv < ???? > 314.96mhz, 1.3dbuvemf * output adjusted * no saw filter * input/output impedance = 50 ?
TA32305FN/fng 2003-12-04 16 application circuit (ask) * this circuit is not guaranteed for mass product design. please evaluate the circuit for mass product design well. for receiver and transceiver saw: safch315mam0t00 (murata manufacturing) x2: tr-1 (tew) q: 2sc2499 (toshiba) 12 4 3 5 6 7 8 10 11 19 27 28 26 25 24 23 22 21 20 8 rssi ref af out mix in gnd1 rf dec charge rf in vcc3 if in gnd2 iff out mix out u/l iff in osc in rf out 29 30 2 1 tx lpf out lpf in detector if out quad vcc2 v cc 1 9 18 13 17 14 15 16 tx power am/ fm tx out rx tx data rx data comparator rssi saw 1000 pf 560 ? r21 c35 1000 pf c32 0.1 f c30 ?? c22 v cc v cc v cc v cc v cc v cc v cc 27nh 1 k ? l1 r19 6 pf 0.01 f c24 c25 1000 pf c26 c22 0.1 f 68 k ? r13 0.01 f 560 pf 68 k ? c14 c15 r12 100 k ? r7 100 k ? r6 0.1 f c12 r10 4.3 k ? 4.7 k ? r11 560 ? r20 r22 560 ? c13 120 p f 10 f 1000 pf c16 l3 33 nh c36 5 p f c18 3300 pf 6 pf c37 c20 330 pf c33 22nh 6 pf c34 r15 43 k ? lo vcc 0.01 f 5 pf 3.6 k ? 33 k ? 10 f 10 pf r3 33 pf c1 c9 r4 33 pf c8 c10 c7 c3 c2 r5 0.1 ? 39.38mhz q
TA32305FN/fng 2003-12-04 17 application circuit (fsk) * this circuit is not guaranteed for mass product design. please evaluate the circuit for mass product design well. for receiver only saw: safch315mam0t00 (murata manufacturing) x2: tr-1 (tew) q: 2sc2499 (toshiba) 12 4 3 5 6 7 8 10 11 19 27 28 26 25 24 23 22 21 20 8 rssi ref af out mix in gnd1 rf dec charge rf in vcc3 if in gnd2 iff out mix out u/l iff in osc in rf out 29 30 2 1 tx lpf out lpf in detector if out quad vcc2 v cc 1 9 18 13 17 14 15 16 tx power am/ fm tx out rx tx data rx data comparator rssi saw 1000 pf 560 ? r21 c35 1000 pf c32 0.1 f c30 ?? c22 v cc v cc v cc v cc v cc v cc 27nh 1 k ? l1 r19 6 pf 0.01 f c24 c25 1000 pf c26 c22 0.1 f 68 k ? r13 0.01 f 560 pf 68 k ? c14 c15 r12 100 k ? r6 0.1 f c12 r10 4.3 k ? 4.7 k ? r11 r18 20 k ? c13 120 p f 10 c16 l3 33 nh r14 68 k ? c19 1000 pf c18 3300 pf 6 pf c37 c20 330 pf lo vcc 0.01 f 5 pf 3.6 k ? 33 k ? 10 f 10 pf r3 33 pf c1 c9 r4 33 pf c8 c10 c7 c3 c2 r5 0.1 ?
TA32305FN/fng 2003-12-04 18 application circuit (fsk) * this circuit is not guaranteed for mass product design. please evaluate the circuit for mass product design well. for transceiver only: change the constants (x1 and r23) at oscillator circuit like the table below to be shifted oscilla tor frequency 10 khz. saw: safch315mam0t00 (murata manufacturing) x2: tr-1 (tew) q: 2sc2499 (toshiba) c5: 1sv325 (toshiba) constant transceiver 1 transceiver 2 x1 39.38mhz 39.39mhz r23 120 k ?? 150 k ?? 12 4 3 5 6 7 8 10 11 19 27 28 26 25 24 23 22 21 20 8 rssi ref af out mix in gnd1 rf dec charge rf in vcc3 if in gnd2 iff out mix out u/l iff in osc in rf out 29 30 2 tx lpf out lpf in detector if out quad vcc2 v cc 1 9 18 13 17 14 15 16 tx power am/ fm tx out rx tx data rx data comparator rssi saw 1000 pf 560 ? r21 c35 1000 pf c32 0.1 f c30 ?? c22 v cc v cc v cc v cc v cc v cc v cc v cc 27nh 1 k ? l1 r19 6 pf 0.01 f c24 c25 1000 pf c26 c22 0.1 f 68 k ? r13 0.01 f 560 pf 68 k ? c14 c15 r12 100 k ? r7 100 k ? r6 0.1 f c12 r10 4.3 k ? 4.7 k ? r11 r18 20 k ? 560 ? r20 r22 560 ? c13 120 p f 10 c16 l3 33 nh c36 5 p f r14 68 k ? c19 1000 pf c18 3300 pf 6 pf c37 c20 330 pf c33 22nh 6 pf c34 lo vcc 0.01 f 5 pf 3.6 k ? 33 k ? 10 f 10 pf r3 47 pf c1 c9 r4 47 pf c8 c10 c7 c3 c2 r5 0.1 ? 200 k ? c5 c4 5 p f q
TA32305FN/fng 2003-12-04 19 application circuit * this circuit is not guaranteed for mass product design. please evaluate th e circuit for mass product design well. for transceiver, one antenna version: adjust the circuit expect antenna block. in case of hi po wer output application, set the circuit like left figure. 12 4 3 5 6 7 8 10 11 19 27 28 26 25 24 23 22 21 20 8 rssi ref af out mix in gnd1 rf dec charge rf in vcc3 if in gnd2 iff out mix out u/l iff in osc in rf out 29 30 2 tx lpf out lpf in detector if out quad vcc2 v cc 1 9 18 13 17 14 15 16 tx power am/ fm tx out rx tx data rx data comparator rssi saw 1000 pf 560 ? r21 c35 1000 pf c32 0.1 f c30 ?? c22 v cc v cc v cc v cc v cc v cc v cc v cc 27nh 1 k ? l1 r19 6 pf 0.01 f c24 c25 1000 pf c26 c22 0.1 f 68 k ? r13 0.01 f 560 pf 68 k ? c14 c15 r12 100 k ? r7 100 k ? r6 0.1 f c12 r10 4.3 k ? 4.7 k ? r11 r18 20 k ? 560 ? r20 c13 120 p f 10 f 1000 pf c16 l3 33 nh c36 5 p f r14 68 k ? c19 1000 pf c18 3300 pf 6 pf c37 c20 330 pf c33 22nh 6 pf c34 lo vcc 0.01 f 5 pf 3.6 k ? 33 k ? 10 f 10 pf r3 47 pf c1 c9 r4 47 pf c8 c10 c7 c3 c2 r5 0.1 ? 120 k ? 200 k ? c5 c4 5 p f 39.38mhz q r24 300 ? r15 43 k ? rf in 15 16 tx out c35 v cc l2 0.01 f c33 22nh saw 6 pf hi power output
TA32305FN/fng 2003-12-04 20 package dimensions ssop30-p-300-0.65a unit::mm weight: 0.17 g (typ)
TA32305FN/fng 2003-12-04 21 ? toshiba is continually working to improve the quality an d reliability of its products. nevertheless, semiconductor devices in general can malfunction or fail due to their inhe rent electrical sensitivity and vulnerability to physical stress. it is the responsibility of t he buyer, when utilizing toshiba products , to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such toshiba products could cause loss of human life, bodily injury or damage to property. in developing your designs, please ensure that toshiba products are used within s pecified operating ranges as set forth in the most recent toshi ba products specifications. also, pl ease keep in mind the precautions and conditions set forth in the ?handling guide for semicond uctor devices,? or ?toshiba semiconductor reliability handbook? etc.. ? the toshiba products listed in this document are inte nded for usage in general electronics applications (computer, personal equipment, office equipment, measuri ng equipment, industrial robotics, domestic appliances, etc.). these toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunc tion or failure of which may cause loss of human life or bodily injury (?unintended usage?). unintended usage include atomic energy control in struments, airplane or spaceship instruments, transportation instruments, traffic signa l instruments, combusti on control instruments, medical instruments, all types of safety devices, et c.. unintended usage of toshiba products listed in this document shall be made at th e customer?s own risk. ? the products described in this document are subject to the foreign exchange and foreign trade laws. ? the information contained herein is presented only as a guide for the applications of our products. no responsibility is assumed by toshiba corporation for any infringements of intelle ctual property or other rights of the third parties which may re sult from its use. no license is grant ed by implication or otherwise under any intellectual property or other right s of toshiba corporation or others. ? the information contained herein is subject to change without notice. 000707eba restrictions on product use notice for pb free product about solderability, following conditions were confirmed ? solderability (1) use of sn-36pb solder bath ?e solder bath temperature = 230 ?? ?e dipping time = 5seconds ?e the number of times = once ?e use of r-type flux (2) use of sn-3.0ag-0.5cu solder bath ?e solder bath temperature = 245 ?? ?e dipping time = 5seconds ?e the number of times = once ?e use of r-type flux


▲Up To Search▲   

 
Price & Availability of TA32305FN

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X